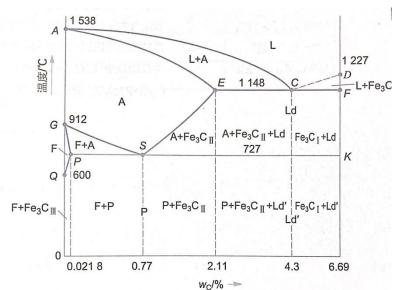


3-1 金属材料的性能

3-5 非铁金属

3-2 钢铁材料


* 3-6 常用非金属材料

*3-3 铁碳合金相图简析

* 3-7 新材料简介

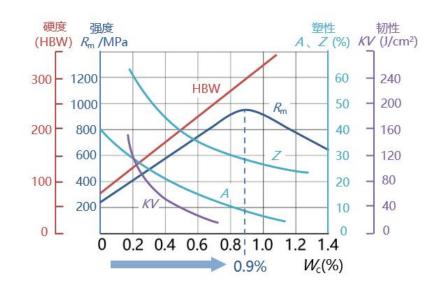
3-4 钢的热处理

铁碳合金相图是表示在缓慢冷却(或缓慢加热) 条件下,不同成分的铁碳合金的状态或组织随温度变 化的图形。

Ⅲ 表 3-16 Fe-Fe₃C 相图中的主要特性点

特性点	温度/℃	w _c /%	含义	
Α	1 538	0	纯铁的熔点或结晶温度	
G	912	0	纯铁的同素异构转变点 α-Fe γ-Fe	
С	1 148	4.3	共晶点,发生共晶转变 L _c ⇒ Ld(A+Fe ₃ C)	
E	1 148	2.11	碳在奥氏体(γ-Fe)中的最大 溶解度点	
S	727	0.77	共析点 A _s —— P(F _p +Fe ₃ C)	
Р	727	0.021 8	碳在铁素体(α-Fe)中的最大 溶解度点	
D	1 227	6.69	渗碳体的熔点	

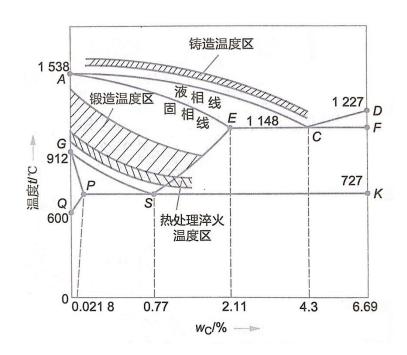
册表 3-17 Fe-Fe₂C 相图中的主要特性线

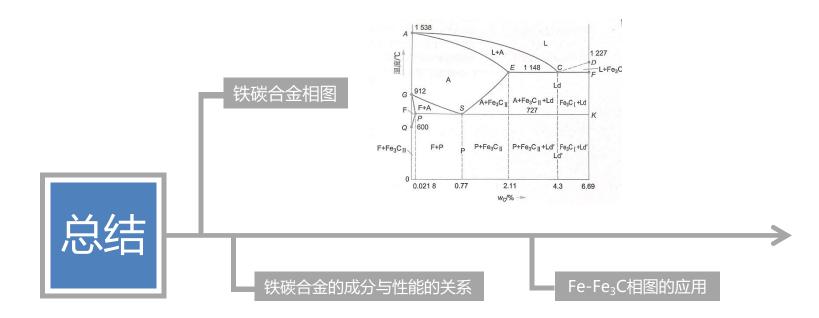

特性线 名称		含义		
ACD线	液相线	此线之上为液相区域,线上点为对应 不同成分合金的结晶开始温度		
AECF线 固相线		此线之下为固相区域,线上点为对应 不同成分合金的结晶终了温度		
GS线 A ₃ 线		冷却时从奥氏体中析出铁素体的开 始线		
ES线 A _{cm} 线		碳在奥氏体(γ-Fe)中的溶解曲线		
ECF 线 共晶线		$L_C \rightleftharpoons Ld(A+Fe_3C)$		
PSK线 共析线		也称 A₁线,As ← P(F+Fe₃C)		

票表 3-18 Fe-Fe₃C 相图中的主要相区及组织

单	目区	两相区	
相区	相组成	相区	相组成
ACD 线以上	液相(L)	ACE	L+A
AESGA	奥氏体 (A)	CDF	L+Fe ₃ C ₁
GPQ	铁素体F	EFKS	A+Fe ₃ C
DFK	渗碳体(Fe ₃ C)	GSP	A+F
	ere, mbjeu	PSK线以下	F+Fe ₃ C

铁碳合金的成分与性能的关系


铁碳合金的成分对其性能有影响。当 Wc<0.9%时,随着碳的质量分数的增大,钢的强度、硬度不断升高,而塑性、韧性不断降低。当 Wc>0.9%时随着碳的质量分数的增大,虽然钢的硬度还在升高,但是强度下降,而塑性、韧性继续降低。这主要是因为碳的质量分数越高,钢中的硬脆相Fe3C越多。因此,非合金钢及低合金钢的Wc一般不超过1.4%。



Fe-Fe₃C相图的应用

Fe-Fe3C相图表明了碳的质量分数不同时,铁碳合金组织和性能的变化规律,也揭示了相同成分的铁碳合金在不同温度时组织和性能的变化。这为生产实践中的选材及制订零件铸造、锻造和热处理等热加工工艺提供了理论依据。

- 1. 选材方面的应用
- 2. 铸造方面的应用
- 3. 锻造方面的应用
- 4. 热处理方面的应用

